Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Food Funct ; 15(3): 1135-1143, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38230750

RESUMO

Background: Arterial stiffness and atherosclerosis are known risk factors for cardiovascular morbidity and mortality. Vegetarian diets have been associated with cardiovascular benefits, including improvements in metabolic parameters. However, the impact of a vegetarian diet on cardiovascular parameters, specifically arterial stiffness and atherosclerosis, in healthy individuals remains unclear. Thus, this study aims to analyze differences in arterial stiffness and atherosclerosis between vegetarian and omnivorous diets in healthy subjects. Methods: A systematic review and meta-analysis were conducted following established guidelines. PubMed, Scopus, Web of Science, and Cochrane Library databases were searched for studies examining the association between vegetarian and omnivorous diets with arterial stiffness and atherosclerosis. Cross-sectional studies reporting carotid to femoral pulse wave velocity (cf-PWv) as a measure of arterial stiffness and carotid intima media thickness (c-IMT) as a measure of atherosclerosis were included. Data were synthesized using random effects models, and sensitivity analyses, meta-regressions, and assessment of publication bias were performed. Results: Ten studies were included in the systematic review, and seven studies were included in the meta-analysis. The pooled analysis demonstrated that individuals following a vegetarian diet had differences in the levels of arterial stiffness (cf-PWv) compared to those following an omnivorous diet (MD: -0.43 m s-1; 95% CI: -0.63, -0.23). Similarly, atherosclerosis (c-IMT) was found to be different in individuals adhering to a vegetarian dietary pattern (MD = -29.86 mm; 95% CI: -58.41, -1.32). Conclusions: Our findings suggest that a vegetarian diet is associated with improved arterial stiffness and reduced atherosclerosis in healthy individuals. These results support the inclusion of a well-balanced vegetarian dietary pattern in the prevention and management of cardiovascular diseases. However, further research is needed to explore the effects of a vegetarian diet on arterial health in diverse populations and to assess long-term cardiovascular outcomes.


Assuntos
Aterosclerose , Espessura Intima-Media Carotídea , Humanos , Análise de Onda de Pulso , Estudos Transversais , Voluntários Saudáveis , Fatores de Risco , Vegetarianos , Dieta Vegetariana
2.
Mol Nutr Food Res ; 68(1): e2300508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933702

RESUMO

SCOPE: Extra virgin olive oil has numerous cardiopreventive effects, largely due to its high content of (poly)phenols such as hydroxytyrosol (HT). However, some animal studies suggest that its excessive consumption may alter systemic lipoprotein metabolism. Because human lipoprotein metabolism differs from that of rodents, this study examines the effects of HT in a humanized mouse model that approximates human lipoprotein metabolism. METHODS AND RESULTS: Mice are treated as follows: control diet or diet enriched with HT. Serum lipids and lipoproteins are determined after 4 and 8 weeks. We also analyzed the regulation of various genes and miRNA by HT, using microarrays and bioinformatic analysis. An increase in body weight is found after supplementation with HT, although food intake was similar in both groups. In addition, HT induced the accumulation of triacylglycerols but not cholesterol in different tissues. Systemic dyslipidemia after HT supplementation and impaired glucose metabolism are observed. Finally, HT modulates the expression of genes related to lipid metabolism, such as Pltp or Lpl. CONCLUSION: HT supplementation induces systemic dyslipidemia and impaired glucose metabolism in humanized mice. Although the numerous health-promoting effects of HT far outweigh these potential adverse effects, further carefully conducted studies are needed.


Assuntos
Dislipidemias , Álcool Feniletílico , Humanos , Camundongos , Animais , Azeite de Oliva/farmacologia , Dislipidemias/etiologia , Álcool Feniletílico/farmacologia , Lipoproteínas , Modelos Animais de Doenças , Glucose
3.
Pharmacol Res ; 198: 106999, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984504

RESUMO

Cell-to-cell communication strategies include extracellular vesicles (EVs) in plants and animals. The bioactive molecules in a diet rich in vegetables and fruits are associated with disease-preventive effects. Plant-derived EVs (PDEVs) are biogenetically and morphologically comparable to mammalian EVs and transport bioactive molecules, including miRNAs. However, the biological functions of PDEVs are not fully understood, and standard isolation protocols are lacking. Here, PDEVs were isolated from four foods with a combination of ultracentrifugation and size exclusion chromatography, and evaluated as vehicles for enhanced transport of synthetic miRNAs. In addition, the role of food-derived EVs as carriers of dietary (poly)phenols and other secondary metabolites was investigated. EVs from broccoli, pomegranate, apple, and orange were efficiently isolated and characterized. In all four sources, 4 miRNA families were present in tissues and EVs. miRNAs present in broccoli and fruit-derived EVs showed a reduced RNase degradation and were ferried inside exposed cells. EVs transfected with a combination of ath-miR159a, ath-miR162a-3p, ath-miR166b-3p, and ath-miR396b-5p showed toxic effects on human cells, as did natural broccoli EVs alone. PDEVs transport trace amounts of phytochemicals, including flavonoids, anthocyanidins, phenolic acids, or glucosinolates. Thus, PDEVs can act as nanocarriers for functional miRNAs that could be used in RNA-based therapy.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Células Cultivadas , Frutas , Mamíferos/genética , Mamíferos/metabolismo
4.
Foods ; 12(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569218

RESUMO

MicroRNAs (miRNAs) regulate gene expression and might resist adverse physicochemical conditions, which makes them potential biomarkers. They are being investigated as biomarkers of dairy production systems, based on the variations in their levels in raw milk depending on animal diet and management. Whether miRNA levels can serve as biomarkers for dairy products remains unclear, since technological or culinary treatments, such as fermentation, may alter their levels. Here, 10 cow dairy farms were sampled in Asturias (north-west Spain) and milk samples were subjected to microwave heating or used to produce yogurt or cheese. Total RNA was isolated from raw milk and three derived products, and levels of seven miRNAs, selected based on previous studies as possible milk production system biomarkers, were assessed by RT-qPCR. The treatments decreased levels of all miRNAs to some extent. These results also imply that cheesemaking increases the concentration of miRNAs in this product; raw milk and cheese supposedly may provide similar concentrations of miRNAs, higher than those of yogurt and microwaved milk. They also indicate that the content of certain miRNAs in raw milk cannot necessarily be extrapolated to other dairy products.

5.
Pharmacol Res ; 187: 106612, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528246

RESUMO

The Mediterranean diet (MD) is one of the healthiest ones and is associated with a lower incidence of cardiovascular and cerebrovascular diseases as well as cancer. Extra virgin olive oil (EVOO) is probably the most idiosyncratic component of this diet. EVOO has been attributed with many healthful effects, which may be due to its phenolic components, e.g. including hydroxytyrosol (HT). Recent studies suggest that EVOO and HT have molecular targets in human tissues and modulate epigenetic mechanisms. DNA methylation is one of the most studied epigenetic mechanisms and consists of the addition of a methyl group to the cytosines of the DNA chain. Given the purported health effects of EVOO (poly)phenols, we analyzed the changes induced by HT in DNA methylation, in a colorectal cancer cell line. Caco-2 cells were treated with HT for one week or with the demethylating agent 5'-azacytidine for 48 h. Global DNA methylation was assessed by ELISA. DNA bisulfitation was performed and Infinium Methylation EPIC BeadChips were used to analyze the specific methylation of CpG sites. We show an increase in global DNA methylation in Caco-2 cells after HT treatment, with a total of 32,141 differentially methylated (CpGs DMCpGs). Interestingly, our analyses revealed the endothelin receptor type A gene (EDNRA) as a possible molecular target of HT. In summary, we demonstrate that cellular supplementation with HT results in a specific methylome map and propose a potential gene target for HT.


Assuntos
Neoplasias Colorretais , Dieta Mediterrânea , Humanos , Células CACO-2 , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Epigênese Genética , Azeite de Oliva/farmacologia , Fenóis/farmacologia
6.
Wiley Interdiscip Rev RNA ; 14(2): e1753, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35872632

RESUMO

Mitochondrial epitranscriptomics refers to the modifications occurring in all the different RNA types of mitochondria. Although the number of mitochondrial RNA modifications is less than those in cytoplasm, substantial evidence indicates that they play a critical role in accurate protein synthesis. Recent evidence supported those modifications in mitochondrial RNAs also have crucial implications in mitochondrial-related diseases. In the light of current knowledge about the involvement, the association between mitochondrial RNA modifications and diseases arises from studies focusing on mutations in both mitochondrial and nuclear DNA genes encoding enzymes involved in such modifications. Here, we review the current evidence available for mitochondrial RNA modifications and their role in metabolic disorders, and we also explore the possibility of using them as promising targets for prevention and early detection. Finally, we discuss future directions of mitochondrial epitranscriptomics in these metabolic alterations, and how these RNA modifications may offer a new diagnostic and theragnostic avenue for preventive purposes. This article is categorized under: RNA Processing > RNA Editing and Modification.


Assuntos
Doenças Mitocondriais , RNA , Humanos , RNA Mitocondrial/metabolismo , RNA/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Processamento Pós-Transcricional do RNA
7.
Front Nutr ; 9: 1065543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483924

RESUMO

Introduction: Pulsed electric field (PEF) has been used for improving extraction of extra virgin olive oil (EVOO). However, the biological changes induced by the consumption of pulsed electric field-obtained extra virgin olive oil (PEFEVOO) have not been studied yet. Materials and methods: EVOO oils from Empeltre variety were prepared by standard (STD) cold pressure method involving crushing of the olives, malaxation and decanting and by this procedure including an additional step of PEF treatment. Chemical analyses of EVOO oils were done. Male and female Apoe-deficient mice received diets differing in both EVOOs for 12 weeks, and their plasma, aortas and livers were analyzed. Results: PEF application resulted in a 17% increase in the oil yield and minimal changes in chemical composition regarding phytosterols, phenolic compounds and microRNA. Only in females mice consuming PEF EVOO, a decreased plasma total cholesterol was observed, without significant changes in atherosclerosis and liver steatosis. Conclusion: PEF technology applied to EVOO extraction maintains the EVOO quality and improves the oil yield. The equivalent biological effects in atherosclerosis and fatty liver disease of PEF-obtained EVOO further support its safe use as a food.

8.
Pharmacol Res ; 185: 106472, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182038

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression. The wide-ranging biological activities of microRNAs stimulated research on disease mechanisms and is suggesting appealing therapeutic applications. When unprotected, miRNAs suffer from rapid degradation and appropriate strategies need to be developed to improve their therapeutic potential. Since the first observation of miRNAs being naturally transported by extracellular vesicles (EVs), the latter have been proposed as specific transport means for drug delivery, conferring stability and increasing resistance against RNase degradation. However, a standard, reproducible, and cost-effective protocol for EV isolation is lacking. Here, the use of broccoli-derived EVs as a therapeutic vehicle for extracellular RNA drug delivery was assessed. EVs were isolated from broccoli, combining ultracentrifugation and size exclusion chromatography methodology. Caco-2 cells were exposed to isolated EVs loaded with exogenous miRNAs and cellular viability was tested. The miRNAs were taken up by this intestinal cell line. Our results show that broccoli EVs can be efficiently isolated, characterized, and loaded with exogenous miRNAs, leading to toxicity in caco-2 cells. Because the pharmaceutical industry is searching for novel drug delivery nanovesicles with intrinsic properties such as low immunogenicity, stability to the gastrointestinal tract, ability to overcome biological barriers, large-scale production, cost-effectiveness, etc., broccoli-isolated nanovesicles might be suitable candidates for future pharmacological applications. We propose broccoli as a natural source of EVs, which are capable of transporting exogenous miRNAs with potential therapeutic effects and suggest that appropriate toxicological and randomized controlled trials as well as patent applications are warranted.


Assuntos
Brassica , Vesículas Extracelulares , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Brassica/genética , Brassica/metabolismo , Células CACO-2 , Vesículas Extracelulares/metabolismo , Sistemas de Liberação de Medicamentos/métodos
9.
Nutrients ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079893

RESUMO

Exosomes are extracellular vesicles (EVs) that regulate intercellular signaling by transferring small RNAs, proteins, nucleic acids, lipids, and other metabolites to local or distant organs, including the brain, by crossing the blood-brain barrier. However, the transport of (poly)phenols in human EVs has not yet been described. Therefore, we aimed here to explore (i) whether resveratrol and (or) its derived metabolites are found in the cargo of human plasma exosome-containing EVs (E-EVs), (ii) when this incorporation occurs, and (iii) whether resveratrol intake stimulates the release of E-EVs. Thus, in a pharmacokinetic study, healthy volunteers (n = 16) consumed 1 capsule (420 mg resveratrol) in the evening before attending the clinic and one more capsule on the day of the pharmacokinetics. The plasma and the isolated E-EVs were analyzed using UPLC-ESI-QTOF-MS. Of 17 metabolites in the plasma, 9 were identified in the E-EVs, but not free resveratrol. The kinetic profiles of resveratrol metabolites were similar in the plasma and the E-EVs, a higher metabolite concentration being detected in the plasma than in the E-EVs. However, the plasma/E-EVs ratio decreased in the gut microbial metabolites, suggesting their better encapsulation efficiency in E-EVs. In addition, glucuronide conjugates of resveratrol, dihydroresveratrol, and lunularin were incorporated into the E-EVs more efficiently than their corresponding sulfates despite glucuronides reaching lower plasma concentrations. Notably, more E-EVs were detected 10 h after resveratrol consumption. This exploratory study provides the first evidence that (i) resveratrol metabolites are transported by E-EVs, with a preference for glucuronide vs. sulfates, (ii) the gut microbial metabolites concentration and kinetic profiles are closely similar in E-EVs and plasma, and (iii) resveratrol intake elicits E-EVs secretion. Overall, these results open new research avenues on the possible role of E-EVs in (poly)phenol health effects.


Assuntos
Exossomos , Vesículas Extracelulares , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Glucuronídeos/metabolismo , Humanos , Resveratrol , Sulfatos
10.
Adv Nutr ; 13(5): 2039-2060, 2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-35679085

RESUMO

Dietary components can induce epigenetic changes through DNA methylation, histone modification, and regulation of microRNAs (miRNAs). Studies of diet-induced epigenetic regulation can inform anticipatory trials and fine-tune public health guidelines. We systematically reviewed data on the effect of extra virgin olive oil (EVOO) and its phenolic compounds (OOPCs) on the epigenetic landscape. We conducted a literature search using PubMed, Scopus, and Web of Science databases and scrutinized published evidence. After applying selection criteria (e.g., inclusion of in vitro, animal, or human studies supplemented with EVOO or its OOPCs), we thoroughly reviewed 51 articles, and the quality assessment was performed using the revised Cochrane risk of bias tool. The results show that both EVOO and its OOPCs can promote epigenetic changes capable of regulating the expression of genes and molecular targets involved in different metabolic processes. For example, oleuropein (OL) may be an epigenetic regulator in cancer, and hydroxytyrosol (HT) modulates the expression of miRNAs involved in the development of cancer, cardiovascular, and neurodegenerative diseases. We conclude that EVOO and its OOPCs can regulate gene expression by modifying epigenetic mechanisms that impact human pathophysiology. A full elucidation of the epigenetic effects of EVOO and its OOPCs may contribute to developing different pharma-nutritional strategies that exploit them as epigenetic agents. This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO) as CRD42022320316.


Assuntos
Epigênese Genética , MicroRNAs , Animais , Humanos , MicroRNAs/genética , Azeite de Oliva/farmacologia , Fenóis/farmacologia
11.
Nutrients ; 14(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406086

RESUMO

The mechanisms underlying the lipid-lowering effect of nuts remain elusive. This study explores whether one-year supplementation with walnuts decreases LDL-cholesterol (LDL-C) by affecting the expression of circulating microRNAs (c-miRNA). In this sub-study of the Walnuts and Healthy Aging (WAHA) trial, we obtained fasting serum at baseline and at 1 year from 330 free-living participants (63-79 year, 68% women), allocated into a control group (CG, abstinence from walnuts, n = 164) and a walnut group (WG, 15% of daily energy as walnuts, ~30-60 g/d, n = 166). Participants in the WG showed a 1 year decrease in LDL-C (-9.07, (95% confidence interval: -12.87; -5.73) mg/dL; p = 0.010 versus changes in the CG). We conducted a miRNA array in eight randomly selected participants in the WG who decreased in LDL-C. This yielded 53 c-miRNAs with statistically significant changes, 27 of which survived the correction for multiple testing. When validating them in the full population, statistical significance lasted for hsa-miR-551a, being upregulated in the WG. In mediation analysis, the change in hsa-miR-551a was unrelated to LDL-C decrease. Long-term supplementation with walnuts decreased LDL-C independently of the changes in c-miRNA. The hsa-miR-551a upregulation, which has been linked to a reduced cell migration and invasion in several carcinomas, suggests a novel mechanism of walnuts in cancer risk.


Assuntos
LDL-Colesterol , MicroRNA Circulante , Juglans , Idoso , Feminino , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade
12.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35270004

RESUMO

Dietary (poly)phenols are extensively metabolized, limiting their anticancer activity. Exosomes (EXOs) are extracellular vesicles that could protect polyphenols from metabolism. Our objective was to compare the delivery to breast tissue and anticancer activity in breast cancer cell lines of free curcumin (CUR) and resveratrol (RSV) vs. their encapsulation in milk-derived EXOs (EXO-CUR and EXO-RSV). A kinetic breast tissue disposition was performed in rats. CUR and RSV were analyzed using UPLC-QTOF-MS and GC-MS, respectively. Antiproliferative activity was tested in MCF-7 and MDA-MB-231 breast cancer and MCF-10A non-tumorigenic cells. Cell cycle distribution, apoptosis, caspases activation, and endocytosis pathways were determined. CUR and RSV peaked in the mammary tissue (41 ± 15 and 300 ± 80 nM, respectively) 6 min after intravenous administration of EXO-CUR and EXO-RSV, but not with equivalent free polyphenol concentrations. Nanomolar EXO-CUR or EXO-RSV concentrations, but not free CUR or RSV, exerted a potent antiproliferative effect on cancer cells with no effect on normal cells. Significant (p < 0.05) cell cycle alteration and pro-apoptotic activity (via the mitochondrial pathway) were observed. EXO-CUR and EXO-RSV entered the cells primarily via clathrin-mediated endocytosis, avoiding ATP-binding cassette transporters (ABC). Milk EXOs protected CUR and RSV from metabolism and delivered both polyphenols to the mammary tissue at concentrations compatible with the fast and potent anticancer effects exerted in model cells. Milk EXOs enhanced the bioavailability and anticancer activity of CUR and RSV by acting as Trojan horses that escape from cancer cells' ABC-mediated chemoresistance.


Assuntos
Antineoplásicos , Neoplasias da Mama , Curcumina , Exossomos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Curcumina/farmacologia , Curcumina/uso terapêutico , Feminino , Humanos , Leite , Polifenóis/farmacologia , Ratos , Resveratrol/farmacologia , Resveratrol/uso terapêutico
14.
Eur J Nutr ; 61(2): 1043-1056, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34716465

RESUMO

PURPOSE: Extracellular RNAs are unstable and rapidly degraded unless protected. Bovine-milk extracellular vesicles (EVs) confer protection to dietary miRNAs, although it remains unclear whether this importantly improves their chances of reaching host target cells to exert biological effects. METHODS: Caco-2, HT-29, Hep-G2 and FHs-74 cell lines were exposed to natural/labelled milk EVs to evaluate cellular uptake. Five frequently reported human milk miRNAs (miR-146b-5p, miR-148a-3p, miR-30a-5p, miR-26a-5p, and miR-22-3p) were loaded into EVs. The intracellular concentration of each miRNA in cells was determined. In addition, an animal study giving an oral dose of loaded EVs in C57BL6/ mice were performed. Gene expression regulation was assessed by microarray analysis. RESULTS: Digestive stability analysis showed high overall degradation of exogenous miRNAs, although EV-protected miRNAs better resisted gastrointestinal digestion compared to free miRNAs (tenfold higher levels). Importantly, orally delivered EV-loaded miRNAs reached host organs, including brain, in mice. However, no biological effect has been identified. CONCLUSION: Milk EVs protect miRNAs from degradation and facilitate cellular uptake. miRNA concentration in EVs from bovine milk might be insufficient to produce gene modulation. Nevertheless, sizable amounts of exogenous miRNAs may be loaded into EVs, and orally delivered EV-loaded miRNAs can reach tissues in vivo, increasing the possibility of exerting biological effects. Further investigation is justified as this could have an impact in the field of nutrition and health (i.e., infant formulas elaboration).


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Células CACO-2 , Digestão , Vesículas Extracelulares/metabolismo , Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Leite Humano/metabolismo
15.
Adv Nutr ; 13(4): 1310-1323, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34928307

RESUMO

The production of plastic has dramatically increased in the last 50 y. Because of their stability and durability, plastics are ubiquitously incorporated in both marine and terrestrial ecosystems. Plastic is acted upon by biological, chemical, and physical agents, leading to fragmentation into small pieces [i.e., microplastics (MPs) or nanoplastics (NPs)], classified depending on their size. MPs range from 0.1 to 5000 µm and NPs are fragments between 0.001 to 0.1 µm. MPs and, especially NPs, are easily incorporated into living beings via ingestion. The penetration of MPs and NPs into the food system is an important issue, for both food security and health risk assessment. Ingestion of different MPs and NPs has been associated with different issues in the intestine, such as direct physical damage, increased intestinal permeability, diminished microbiota diversity, and increases in local inflammatory response. However, the potential harmful effects of low-dose dietary plastic are still unclear. Some evidence indicates that intestinal uptake of plastic particles is relatively low and is mostly dependent on the particle's size. However, other evidence highlights that NPs dysregulate key molecular signaling pathways, modify the gut microbiota composition, and may induce important epigenetic changes, including transgenerational effects that might be involved in the onset of many different metabolic disorders. Until now, experiments have been mostly performed on marine organisms, Caenorhabditis elegans, and mouse models, but some research indicates accidental plastic dietary consumption by humans, raising the issue of detrimental health effects of MPs and NPs. This review discusses the impact that MPs and NPs could have on the intestinal tract and the biodistribution and systemic, cellular, and molecular levels. Accumulated evidence of MPs' effects on the human gut suggests that large exposure to MPs and NPs may have phenotypical untoward effects in humans, calling for urgent research in this field.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Epigênese Genética , Humanos , Camundongos , Microplásticos/toxicidade , Plásticos , Distribuição Tecidual , Poluentes Químicos da Água/análise
16.
J Agric Food Chem ; 69(32): 9326-9337, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34358423

RESUMO

Broccoli (Brassica oleracea var. italica) and its bioactive compounds are associated with beneficial health effects, which might be enabled, at least in part, through miRNA regulation, despite recent controversial studies suggesting that exogenous dietary miRNAs may reach host circulation and target cells to regulate gene expression. Here, a computational analysis was performed to explore the processes and pathways associated with genes targeted either by (1) host-expressed miRNAs (endogenous) modulated by the bioactive compounds in broccoli or (2) miRNAs derived from broccoli (exogenous). In addition, the stability of exogenous miRNAs from broccoli was assessed after broccoli was subjected to the usual processing methods and in vitro digestion-simulating gastrointestinal (GI) conditions. Overall, bioinformatic results show that the anticarcinogenic and cancer-preventive properties attributed to cruciferous vegetables might be mediated, at least in part, through miRNA-related mechanisms. Moreover, results show that broccoli-derived miRNAs can survive common food-processing conditions and GI digestion.


Assuntos
Brassica , MicroRNAs , Brassica/genética , Dieta , Digestão , Manipulação de Alimentos , Humanos , MicroRNAs/genética
17.
Eur J Nutr ; 60(8): 4279-4293, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34027583

RESUMO

PURPOSE: Exosomes are extracellular vesicles secreted by cells, which can transport different molecules, including nucleic acids. Dietary habits may induce gene regulation through the modulation of exosomal RNAs. We aimed at characterizing exosomal lncRNAs, mRNA and miRNAs modulation after a 1-year adherence to a low-fat diet (LFD) or to Mediterranean-based diets enriched in extra-virgin olive oil (MedDiet + EVOO) or in a mixture of nuts (MedDiet + Nuts). METHODS: Plasma samples were collected, at baseline and after 1 year of dietary interventions, from 150 participants included in the PREDIMED study (Reus Center). LncRNAs, mRNAs and miRNAs were isolated from plasma exosomes and screened. RT-qPCR validation was performed for miRNAs. RESULTS: Compared with LFD, 413 lncRNAs and 188 mRNAs, and 476 lncRNAs and 235 mRNAs were differentially modulated in response to the MedDiet + EVOO and MedDiet + Nuts interventions, respectively. In addition, after 1 year of dietary interventions, 26 circulating miRNAs were identified as differentially expressed between groups. After 1 year of intervention, 11 miRNAs significantly changed in LFD group, while 8 and 21 were modulated in response to the MedDiet enriched with EVOO or nuts, respectively. Bioinformatic analyses of differentially expressed miRNAs and their validated target genes suggest certain metabolic pathways are modulated by LFD (PI3K-Akt and AMPK), MedDiet + EVOO (PI3K-Akt, NF-kappa B, HIF-1, and insulin resistance), and MedDiet-Nuts (FoxO, PI3K-Akt, AMPK, p53 and HIF-1) interventions. CONCLUSION: Results show that 1-year MedDiet + Nuts and MedDiet + EVOO dietary interventions modulate exosomal RNA content, with the former affecting a higher number of miRNAs. The modulation of exosomal RNAs could help explain how the adherence to a Mediterranean diet may lead to beneficial effects and deserves further investigation.


Assuntos
Dieta Mediterrânea , MicroRNAs , Dieta com Restrição de Gorduras , Humanos , MicroRNAs/genética , Nozes , Azeite de Oliva , Fosfatidilinositol 3-Quinases
18.
Br J Pharmacol ; 178(11): 2218-2245, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33644849

RESUMO

Cross-kingdom communication via non-coding RNAs is a recent discovery. Exogenous microRNAs (exog-miRNAs) mainly enter the host via the diet. Generally considered unstable in the gastrointestinal tract, some exogenous RNAs may resist these conditions, especially if transported in extracellular vesicles. They could then reach the intestines and more probably exert a regulatory effect. We give an overview of recent discoveries concerning dietary miRNAs, possible ways of enhancing their resistance to food processing and gut conditions, their transport in extracellular vesicles (animal- and plant-origin) and possible biological effects on recipient cells after ingestion. We critically focus on what we believe are the most relevant data for future pharmacological development of dietary miRNAs as therapeutic agents. Finally, we discuss the miRNA-mediated cross-kingdom regulation between diet, host and the gut microbiota. We conclude that, despite many obstacles and challenges, extracellular miRNAs are serious candidates to be targeted pharmacologically for development of new therapeutic agents.


Assuntos
Vesículas Extracelulares , Microbioma Gastrointestinal , MicroRNAs , Animais , Dieta , Trato Gastrointestinal , Humanos , MicroRNAs/genética
19.
Semin Cancer Biol ; 73: 19-29, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33086083

RESUMO

Cancer is one of the leading causes of premature death and constitutes a challenge for both low- and high-income societies. Previous evidence supports a close association between modifiable risk factors, including dietary habits, and cancer risk. Investigation of molecular mechanisms that mediate the pro-oncogenic and anti-oncogenic effects of diet is therefore fundamental. MicroRNAs (miRNAs) have received much attention in the past few decades as crucial molecular elements of human physiology and disease. Aberrant expression patterns of these small noncoding transcripts have been observed in a wide array of cancers. Interestingly, human miRNAs not only can be modulated by bioactive dietary components, but it has also been proposed that diet-derived miRNAs may contribute to the pool of human miRNAs. Results from independent groups have suggested that these exogenous miRNAs may be functional in organisms. These findings open the door to novel and innovative approaches to cancer therapy. Here, we provide an overview of the biology of miRNAs, with a special focus on plant-derived dietary miRNAs, summarize recent findings in the field of cancer, address the possible applications to clinical practice and discuss obstacles and challenges in the field.


Assuntos
Dieta , MicroRNAs , Neoplasias , Plantas , Animais , Humanos
20.
Eur J Nutr ; 60(4): 1999-2011, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32979076

RESUMO

PURPOSE: Epidemiological studies and clinical trials support the association of nut consumption with a lower risk of prevalent non-communicable diseases, particularly cardiovascular disease. However, the molecular mechanisms underlying nut benefits remain to be fully described. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and play a pivotal role in health and disease. Exosomes are extracellular vesicles released from cells and mediate intercellular communication. Whether nut consumption modulates circulating miRNAs (c-miRNAs) transported in exosomes is poorly described. METHODS: Cognitively healthy elderly subjects were randomized to either control (n = 110, abstaining from walnuts) or daily supplementation with walnuts (15% of their total energy, ≈30-60 g/day, n = 101) for 1-year. C-miRNAs were screened in exosomes isolated from 10 samples, before and after supplementation, and identified c-miRNA candidates were validated in the whole cohort. In addition, nanoparticle tracking analysis and lipidomics were assessed in pooled exosomes from the whole cohort. RESULTS: Exosomal hsa-miR-32-5p and hsa-miR-29b-3p were consistently induced by walnut consumption. No major changes in exosomal lipids, nanoparticle concentration or size were found. CONCLUSION: Our results provide novel evidence that certain c-miRNAs transported in exosomes are modulated by walnut consumption. The extent to which this finding contributes to the benefits of walnuts deserves further research.


Assuntos
Exossomos , Juglans , MicroRNAs , Suplementos Nutricionais , Nozes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...